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The Walfisz-like formula from Poisson’s summation 
formula and some applications 

U de Freitas and A N Chaba 
Universidade Federal da Paraiba, Departamento de Fisica, CCEN, Joio Pessoa, Paraiba, 
Brasil 

Received 14 September 1982, in final form 24 January 1983 

Abstract. The Walfisz-like formula for the number of lattice points of an arbitrary 
m-dimensional lattice in a hyper-ellipsoid with given semi-axes is derived from Poisson’s 
summation formula. Applications to ( i )  the evaluation of certain lattice sums and ( i i )  the 
calculation of the expressions for the density of states of a single non-relativistic particle 
as well as of a relativistic particle enclosed in a rectangular m-dimensional box of finite 
size and subject to different boundary conditions are given. 

1. Introduction 

In order to calculate the expressions for the thermodynamic properties of an ideal 
non-relativistic or relativistic quantum gas contained in an enclosure of finite volume, 
it is necessary to know the expression for the density of single-particle states for such 
a system. Recently such expressions for the density of states of a single non-relativistic 
particle enclosed in a cubical box for the case of one, two and three dimensions and 
for the periodic (PBC), Dirichlet (DBC) and Neumann (NBC) boundary conditions have 
been derived (Baltes and Steinle 1977, Chaba 1979) by making use of the Walfisz 
formula (Walfisz 1924) for the number of lattice points of a simple lattice in a 
hypersphere of given radius. More recently, Pu (1981) has obtained the corresponding 
expressions for the case of an m-dimensional rectangular box with sides L1, L2,  . . . , L ,  
by making use of the Poisson summation formula (PSF) (Stein and Weiss 1971) directly, 
but unfortunately some of these expressions are in error. Similarly in the case of a 
relativistic particle, such expressions for a particle enclosed in a rectangular box of 
different dimensionalities and in the thermodynamic limit are well known (Carvalho 
and Rosa Jr 1980, Dunning-Davies 1981). 

In  this paper we report the derivation of the more general Walfisz-like formula 
for the number of lattice points of an arbitrary m-dimensional lattice in a hyper- 
ellipsoid with given semi-axes, starting from the PSF (earlier (Chaba 1979) the PSF in 
one dimension was derived from the Walfisz formula and the converse could also be 
achieved simply by reversing the steps) and then using a special case of this for a 
simple lattice, we obtain the exact expressions (including finite size effects) for the 
density of states in the case of a single non-relativistic as well as a relativistic particle 
enclosed in an m-dimensional rectangular box and subject to different boundary 
conditions. Further, we show that some of the results obtained can be applied for 
doing (lattice) sums involving arbitrary lattices in  any dimension and give some 
examples. 

@ 1983 The Institute of Physics 2205 



2206 U de Freitas and A N Chaba 

2. The Walfisz-like formula from Poisson's summation formula 

Let f7) be a Bravais lattice in an m-dimensional Euclidean space, with volume U per 
lattice point and {y} be its reciprocal, normalised by exp(2niy 7) = 1, then the PSF 

applied to summation over the lattice points (of the lattice (7)) of a function F ( T )  is 

c F ( 7 )  = c %Y 1 
I 1 

where 9 ( y )  is the Fourier transform of F ( r ) .  

where r, T and y can be written as 

i, ( p  = 1 , 2 , .  , , , m )  being the unit vectors along the Cartesian coordinates of an 
orthogonal set of axes. We now define the vectors R, T and J? as 

m m m 

p = l  p = l  p = l  
R = 1 Xpip, T = Tpi, and r =  rpip (4) 

with Xp = T, = aprp and r p  = yp/ap, ( p  = 1 ,2 ,  . . . , m ) ,  where ap(p  = 1 , 2 , .  . . , m )  
are constants. Noting that R r = r * y, we can rewrite equation (2) as 

9 ( y )  = ( u a l a 2 .  . . am)- '  F ( r )  exp(-2?riR I') d"R. ( 5 )  I 
Now, we assume that the function F(r)  has a special form and its dependence on r 
is only through the magnitude R of R. In this case, it can be easily seen that 9 ( y )  
depends on y only through the magnitude and, in this case, we can rewrite 
equation ( 5 )  as 

of 

9(r )  = ( u a l a 2 .  . . am)- '  I F ( R )  exp(-2?riR - r) dmR, (6) 

and the PSF, i n  this special case, takes the form, 

2 2  Now the relation R 2  = X r = 1  X', = X ~ = I  a p x ,  can be rewritten as 

f xZ/(R/a,)* = 1, 
p = l  

which is the equation of an m -dimensional hyper-ellipsoid with semi-axes A, = R/a, 
( p  = 1, 2 , .  . . , m ) ,  the variable R determining the size of the hyper-ellipsoid. Now, 
for the sake of simplicity in  calculating 9 ( r )  from equation (6), we choose r along 
the unit vector i l ,  so that R - r=XIT. Also, we may write dmR =U1 dm-lR',  where 
the vector R' = Zr=:=z Xpip. Integrating over the directions of R ' ,  we can write d"-'R' = 
S,,-l(R') dR',  S,,,-l(R') being the surface area of an (m - 1)-dimensional sphere 
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(Pathria 1972) and then we have 

g(r) = (vala2 .  . . ~ , , , - ~ 2 ~ ( " - ~ ) / ~ [ r ( m  - 1)/2]-' 
oc 

x Iw I F ( R )  exp(-2~iTX~)R'"'-~ dX1 dR'. (9) 
X1=-m R ' = O  

Now, putting X1 = R cos 8, R' = R sin 8, dX1 dR '=  R dR d8 (where 8 varies from 0 
to r) and integrating over the angle 8, we obtain 

where J , (z)  occurring inside the integral is a Bessel function of the first kind and of 
order Y (Abramowitz and Stegun 1965). Now, using equations (7) and (lo), we get 

1 F(T) = 2 n ( v a l a z . .  . U,,,)-' 

which can be rewritten as 

dR R"'F(R) 1 J ( , , , -Z , /Z (~ .~~TR) /T ' " -~ ' /~ ,  
T Jo Y 

.w 

where 

n,,,(R) dR = 2.rr(valaz. . . a,,,)-'R"/2 J ~ , ~ z , ~ z ( 2 . r r T R ) / ~ " ~ 2 ~ ~ z  dR, (12) 
Y 

can be interpreted as the number of lattice points of the lattice (7 )  between two 
hyper-ellipsoids with semi-axes R/ap  and (R +dR)/a,(p = 1 ,2 , .  . . , m).  The 
expression for the number Nm(p/al, p /az , .  . . ,p/a,,,) of lattice points in a hyper- 
ellipsoid of semi-axes p/ap(p = 1, 2, .  . . , m )  can be obtained by integrating equation 
(121, 

Nm(pla1,pla2,. . ,p/am)= n,(R)dR I 
= ( v a l a z . .  . a,)-1p"2 1 ~ , , , , ~ ( 2 ~ r ~ ) / r ~ / ~ .  

Y 

(13) 

obtain the following Walfisz-like formula for the number of lattice points of the lattice 
(7) i n  an m-dimensional hyper-ellipsoid of semi-axes A1, AZ, . . . , A,,,, 

Substitutingp/a,byA, ( p  = 1, 2 , .  . . , m)andnotingthatT, = Apy,) 2 2 1 / 2  ,wefinally 

(14) 
Now we shall discuss the special cases of equation (14). 
( i )  For a simple lattice (square in the case of two dimensions, simple cubic in the 

case of three dimensions, etc) with primitive lattice vectors of unit magnitude, v = 1 
and yp = qp are integers. In this case, the above expression becomes 

Nm(AI,A>, * * *Am) 
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which, in the case of a hyper-sphere of radius p, becomes 

2 1/2 where q = 
(ii) For the case of an arbitrary lattice { T } ,  the number of lattice points in a 

hyper-sphere of radius p is obtained from (14) by putting a1  = a2 = . . . = a, = 1, so 
that A 1  = A 2 . .  . = A ,  = p  and thus we have 

q p )  . Equations (15) and (16) are just the Walfisz formulae. 

2 1 /2  y = (ZTz1 y p )  
case, equations (1 1) and (12) become, respectively, 

being the magnitude of the reciprocal lattice vector y, and, in this 

x F ( ~ ) = j  d R F ( R ) n m i R )  (18) 

t 19) 

where the expression in equation (19) represents the number of lattice points of the 
lattice {T} in a hyperspherical shell of radius R and thickness dR. In the case of 
further specialisation to that of a simple lattice, (17) reduces to (16), as it should, and 
(19) becomes 

m 

0 

and 
n m ( R )  dR = (21r/v)R"'~ 1 J,m-2,/2(2rryR)/y"-2"2 dR, 

Y 

W 

n,(R) dR = 217R"" 1 J ~ , - 2 , / ~ ( 2 . r r R q ) / q ' " - ~ ' / ~  dR, (20) 
(q,)=-m 

2 1 /2  where q = (Zr=, q p )  . 

3. Applications 

Now we shall consider the applications of some of the results obtained above. 

3.1. Evaluation of lattice sums in arbitrary dimensions 

Firstly, we notice that in order to do the lattice sum Z T F ( 7 )  for a certain dimensionality, 
we can use equation (18) along with equation (19) for n,(R) dR with a suitable value 
of m. The result thus obtained would be exact and would be the same as that arrived 
at by the direct application of PSF but the proceudre given here is much simpler. We 
may further point out that this procedure can also be regarded as an application of 
the Walfisz-like formula (equation (17)), because equation (19) can be obtained from 
equation (17) just by differentiation. We shall now illustrate this method by doing 
two lattice sums which have already appeared in the literature in order to show how 
direct and straightforward the present approach is as compared with other methods. 

a simple lattice, the prime on the summation indicating that the term 11 = f 2  = 0 is 
excluded from it. As a first step, using equation (18), we do the summation 

First, we take up the two-dimensional sum Z{r)=-W K o [ ~  ( I :  + 1 2 )  2 1/2 1, p > 0, involving 

m 

1 (I: + f ~ ) " * K ~ [ p ( l :  + 1 : ) 1 / 2 ] =  RKl(pR)n2(R) dR, 
( 1 D , ) = - - 0 3  
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where, nz(R) dR is obtained from equation (20) for a simple lattice by putting m = 2, 
with the result 

) 
m 

n;?(R) dR = 27rR +27rR E’ JO(27rqR) dR, ( W = - m  

and doing the integration, we get 
+m m 1 (1: +l:)’/2K1[p(l: +11)1/2]=47r/p3+4~p E’ [w2+47r2(q: +q:)]-’. 

{lp}=-m (q,J=-m 

Separating out the Il = l 2  = 0 term from the sum on the left-hand side and integrating 
with respect to p, we get 

2 1/2 f’ KO[CL(I: +I,) 1 
{lp}=-m 

=27r/p2+(1/2) In(p2/47r)+C 
m 

-(w2/27d E’ (4: +q:)-’[W2+47rZ(q: +q31-’, (21) 
h J = - w  

where C is the constant of integration and can be obtained numerically by giving a 
suitable particular value to W. This sum has already appeared in the literature (Fetter 
er a1 1966, Chaba and Pathria 1975), in connection with different physical problems. 
As a second example, we do the three-dimensional sum Z: e-aT/T, again the prime 
on the sum means that the term corresponding to T = 0 is excluded from it. As a first 
step, using equation (18), we do the sum 

1 e-aT = Jo ~ e-aRn3(R) dR, 
T 

where n3(R)dR is obtained from equation (19) for an arbitrary lattice by putting 
m = 3, with the result 

n3(R) dR = [ (47rR2/u)+(2R/u) E’sin(27ryR)/y], 
Y 

and doing the integration, we get 
2 2 - 2  E e-aT = @ ~ a / u )  E (a2+47r y ) . 

T Y 

Separating out the terms corresponding to T = 0 and y = 0 from the two sides and 
integrating with respect to a, we get 

(22) 

where, J,(O, 1 , 3 ) / ( 7 r ~ ” ~ )  is the constant of integration and this notation is adopted 
to be consistent with that used earlier (Chaba 1980). This sum with simple lattice T 

has already appeared (Chaba and Pathria 1978) in connection with the study of the 
phenomenon of Bose-Einstein condensation in a three-dimensional system of ideal 
bosons. More recently, it has occurred again in the work of Medeiros e Silva and 
Mokross (1980) on the screened Wigner Lattice, where they used Ewald’s method 
for doing this sum. We may point out that the form of our result (equation (22)) is 
much more elegant and also is easier to work with. Before ending this discussion on 

~‘e -aT/~=47r / (ua2)+J , (0 ,  1 , 3 ) / ( 7 r ~ ’ / ~ ) + a  -(a2/7ru)1’y-2(a2+47r 2 y 2 ) -1  , 
5 Y 
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the lattice sums, we wish to make one more comment. Whereas in the references 
Chaba (1979) and Pu (1981), it was shown that the sums in the k-space can be done 
by using the relevant expressions for density of states obtained from the Walfisz 
formula (the results being identical with those obtained by using PSF), here we have 
shown that we can do sums involving any arbitrary lattice (in the real space or the 
k-space) by using the expression for the density of lattice points obtained from the 
Walfisz-like formula or from the PSF. 

3.2. Density of states of a non-relativistic particle 

Now we shall derive expressions for the density of states of a single non-relativistic 
particle in an m-dimensional rectangular box of finite size and of sides L1, L 2 ,  . . . , Lm 
and subject to PBC, NBC and DBC. Such expressions have already been derived Pu 
(1981) but contain an error. So we have taken up this application in order to give 
the correct results, obtained using a somewhat different approach, for ready reference. 
We take up the case of PBC first. In this case, the single-particle energy eigenvalues 
e are given by e = h2k2/2m, where 

The number of states N p ( K )  with k S K  or with ZT=l l ; /L;  K 2 / 4 r 2 ,  is, clearly, 
equal to the number of lattice points of a simple m-dimensional lattice in a hyper- 
ellipsoid with semi-axes K L p / 2 r ( p  = 1 , 2 , .  . . , m )  and, therefore, using the Walfisz 
formula, equation 1151, we obtain 

(24) 

which exactly agrees with equation (19) of Pu (1981) who derived it  by using the PSF 
directly. Further, we feel that he incorrectly called this expression (which deals with 
the number of single-particle sfates of a non-relativistic particle in a rectangular box) 
as the Walfisz formula whereas we have reserved this name for equations (15) and 
(16) and the Walfisz-like formulae for equations (14) and (17) (All these expressions 
deal with the number of lattice points in a hypersphere or hyper-ellipsoid). Now we take 
up the cases of the DBC and the NBC. In these cases, k is given by 

where, for the DBC 

11.2 ...., m = 1, 2, 3, . . . , 

and, for the NBC 

l l , 2  ..... m = 0, 1, 2 ,  3, . . . . ( 2 5 )  

Now, if f ( x l ,  x2,  . . . , x m )  is an even function in all of its arguments, then we can obtain 
the following result by first doing it in  one, two, and three dimensions and then 



Applications of the Walfisz-like formula 2211 

generalising it to m dimensions, 

where 77 = * l ,  Now we choose 

where e(x) is the step-function defined by 

when x a 0 
when x < 0. e(x)  = 

In  this case equation (26)  becomes 

where 

77 = [ + l ,  for the NBC 

-1, for the DBC 

and N m ( K ;  L1, L 2 , ,  . . , L,) is the number of states with k s K  for a particle in a 
rectangular box of sides L1 ,  Lz, . . . , L,, for the boundary conditions indicated by the 
superscripts P for PBC, D for DRC and N for NBC. For all the three boundary conditions, 
the results can be written together as 

where 77 = 0 for the PBC. Now substituting equation (24)  in equation (29), we get 

In the case of the PBC, q = O  and, therefore, only one term in the summations 
over s and the j p ‘ s  corresponding to s = m and jl = 1 ,  j 2  = 2, . . . j m  = m survives and 
we recover equation (24). Now we can obtain the expression for the density of states 
D m ( k )  by differentiating equation (30). 
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D m ( k )  = dNm(k)/dk 
2 (s+2) /2 (1 + 7 ) Lj ,  Lj, . . . Lj,kSl2 

- ( l+q2) - " (qms(k )+  s = l  f q m - s  1 s j ,  < c j 2 ,  .. j ,  s m (2 r ) s /2  

Although equations (30) and (31) are somewhat similar to (21) and (16) respectively 
of Pu (1981), there is a slight difference in that in his results there occurs a combinatorial 
factor (T) as multiplier instead of the sum over the j ' s  in our results. This error in 
his equations arose because Pu assumed that the function f(xl ,  x2, . . . , x,) occurring 
in equation (26) is invariant under all permutations of its arguments whereas in our 
problem f given in equation (27) does not have the above property for a rectangular 
box, in general, though it does possess that property in the case of a 'cubical' box. 
That is why the special cases of equation (16) of Pu (1981) for m = 2 and 3 did agree 
with the corresponding results in Chaba (1979) which were valid only in the case of 
the 'cubical' box. 

3.3. Density of states of a relativistic particle 

Now we shall derive the expression for the density of states of a single relativistic 
particle enclosed in an m-dimensional 'rectangular' box of finite size and of sides L 1 ,  
L 2 , .  . . , L ,  (and of volume V = L l L 2 . .  . L,)  and subject to PBC. In this case, the 
single-particle energy eigenvalues e are given by 

e'= m;c4+c2h2k2 (32) 

which can also be written as 

(33) 2 2 4 1/2 k = ( e  -moc ) / c h  

where k is again given by equation (23). 

the number of different sets { l p }  of the values of the lp's, satisfying 
The number of states Np(E) with E S E  or k SK = (E2-m%4)'/2/ch is given by 

and is clearly equal to the number of lattice points of a simple m-dimensional lattice 
in a hyper-ellipsoid with semi-axes K L p / 2 r ( p  = 1 , 2 , .  . . , m ) ,  and, therefore, using 
the Walfisz formula, equation (15), we obtain 

N t  (E) = V ( E 2 -  m ~ ~ ~ ) " ' / ~ ( c h ) - ' " / ~  

(34) 

Now we can get the expression for the density of states D ; ( E )  by differentiating 
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equation ( 3 4 ) ,  

2213 

which can be rewritten as 

p = l  p = l  
( 3 5 )  

For ready reference, we write below the results for the special cases of m = 1, 2 
and 3 

D ~ ( E )  =  LE ( & - ‘ ( e 2  - m:c4)-ll2 +  LE ( c ~ ) - ’ ( E ’  - m&4)-1 /2  
+W 

2 4 1 / 2  x 1’ c o s [ q ~ ( c ~ ] - ’ ( ~ ~ - m o c  ) I, 
q=-m 

We may mention that the results in  equations (35) - (38)  are new, so far as we know. 
We notice that the first term in each of these equations varies monotonically with E 

but that the subsequent terms are of oscillatory character and it can be easily verified 
that in the thermodynamic limit, the oscillatory terms become negligible as compared 
with the first term except for the case of m = 1. Thus except for m = 1, the first term 
in equation ( 3 5 )  (which contains equations ( 3 7 )  and ( 3 8 ) )  represents the result in the 
thermodynamic limit, the subsequent terms in the summations involving Bessel func- 
tions, being the finite-size corrections. For the case of m = 1, the oscillatory terms 
are of the same order of magnitude as the first term, even in the thermodynamic limit 
and, therefore, the complete expression in (36) has to be used even in this limit. The 
first term of ( 3 5 ) ,  which corresponds to the Weyl term in the case of a non-relativistic 
particle in  a three-dimensional box, is the one used by Dunning-Davies (1981) for 
the (so-called) exact calculation of the thermodynamic properties of an ideal relativistic 
Bose gas, in  the thermodynamic limit. Also the first term in ( 3 8 )  for the density of 
states was used by Carvalho and Rosa Jr (1980) in  their study of the relativistic Bose 
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gas in three dimensions and in the thermodynamic limit. Clearly, one will have to 
use the complete expressions given above in order to include the finite-size effects. 

Now we take up the cases of the DBC and the NBC. In these cases, k in (32) and 
(33) is again given by (25). Now using (34) in (29) which is valid in the present case 
also, we get 

Now we can obtain the expression for the density of states D m ( e ) ,  for L..e PBC, the 
DBC and the NBC by differentiating equation (39) 

In  the case of PBC, q = 0 and, therefore, only one term in the summations over s and 
the j p ’ s  corresponding to s = m and jl = 1,  j 2  = 2, . . . , j m  = m in  equations (39) and 
(40) survives and we recover equations (34) and (35) respectively. 
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